
GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

1

Contents

GPGPU for
Embedded

Systems
Whitepaper

Dan Mor

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

2

1. Introduction .. 3

2. Existing Difficulties in Modern Embedded Systems .. 3

2.1. Not enough of calculation power ... 3

2.2. Power Consumption, Form Factor and Heat Dissipation .. 3

2.3. Generic Approach ... 4

3. GPGPU Benefits in Embedded Systems .. 4

3.1. GPU Accelerating Computing .. 4

3.2. CUDA and OpenCL Frameworks - Definitions ... 5

3.3. CUDA Architecture and Processing Flow .. 5

3.4. CUDA Benchmark on Embedded System .. 5

3.4.1. “N-body” - CUDA N-Body Simulation .. 6

3.4.2. SobolQRNG - Sobol Quasirandom Number Generator ... 8

3.5. Switchable Graphics .. 8

3.5.1. Why we need switchable graphics in embedded systems? .. 8

3.5.2. NVIDIA® Optimus™ Technology .. 8

3.5.3. AMD Enduro™ Technology ... 9

4. Use Cases .. 9

5. Aitech AI GPGPU Systems ... 10

5.1. Aitech AI GPGU Product Line .. 10

5.2. Aitech A178 Thunder - GPGPU Fanless AI Supercomputer .. 10

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

3

1. Introduction
Providing High Performance Embedded Computing (HPEC) Systems using General

Purpose Computation on Graphic Processor Units (GPGPU).

In today’s fast-growing computer industry, embedded systems must be head-to-head

with the latest computing technology. The software applications used by embedded

systems (consumer or military) are becoming more complex and are demanding a lot of

computation power from the hardware.

Therefore, a deep understanding of the difficulties in modern embedded systems and a

knowledge of existing technical solutions will help you to choose the best available

product that will deliver optimal performance for the civilian and military market.

2. Existing Difficulties in Modern Embedded Systems
Below are the most common difficulties that we – Architects, Product Managers,

Engineers – are dealing with in day-to-day situations.

2.1. Not enough of calculation power
While trying to reuse existing software applications, we are constantly adding new futures

and implementing new requirements. The code becomes more and more complex and

the application becomes CPU “hangry”, so eventually, we are dealing with:

• Complex CPU Load Balancing – we are dancing on a “razor blade” in order to satisfy

our SW application demands

• CPU choking – we are ending up with such slow OS response that we need to change

the entire SW architecture and find the very fine line between acceptable response

and getting the job done

• Upgrading and Overclocking – other solutions for adding additional computation

power that can be costly (upgrading) or detrimental to component life (overclocking)

Nowadays, more and more applications are using CUDA libraries (GPU accelerated) in

order to reduce development time and “squeeze” a maximum performance per watt from

the computation engine.

All the reasons above are pushing embedded systems providers to consider using GPU

instead of CPU as a main computing entity.

2.2. Power Consumption, Form Factor and Heat Dissipation
As we saw in the previous chapter, once we are in need of more calculation power, we

are buying more powerful hardware or overclocking an existing one, leading to increased

power consumption.

Looking at the defense industry, we can see that the form factor is playing an especially

important role in product success. The footprint is constantly decreasing and market demand

for SWaP (Size, Weight and Power) optimized systems is increasing. The embedded industry

is not excluded and developers and manufacturers are trying to close the gap between

consumer and embedded market by decreasing a footprint of new systems.

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

4

Increased power consumption and decreased footprint invite a new difficulty – heat

dissipation. Imagine taking a powerful gaming PC and putting it in the same small factor

“toaster” enclosure. You will end up with a burned-out system, instead of the high

performance calculation job you need.

2.3. Generic Approach
While trying to secure a customer or program that typically have tight deadlines and

milestones, embedded systems manufacturers can find themselves frequently

compromising a generic approach versus a proprietary one. How many times do we get a

system for integration and find out that some module of this system has a proprietary

interface? Now, conversely, how smooth do you think the integration process will be, if

all modules support a known generic interface? You right, it will work like a charm.

Zero Time Porting – Develop an entire solution on a Notebook or PC-based station with

the same GPU architecture and then just copy it to embedded system.

3. GPGPU Benefits in Embedded Systems

3.1. GPU Accelerating Computing
GPU-accelerated computing is the use of a graphics processing unit (GPU) together with

a central processing unit (CPU) to accelerate applications.

We have discussed the difficulties in modern embedded systems. Once we are using only

a CPU as a main computing engine, eventually it will choke up. What if we could offload

a portion of the compute-intensive application to the GPU, while the rest of the

application runs on CPU?

This is exactly what GPU Accelerating Computing is doing - offloading some of the

compute-intensive portion of application.

So, how is the GPU doing it faster than CPU?

The GPU has evolved into an extremely flexible and powerful processor because of:

• Programmability

• Precision (Floating Point)

• Performance - thousands of cores to process parallel workloads

• GPUs are getting faster by thanks to the push

from the giant gaming industry

NVIDIA® explains it very well:

A simple way to understand the difference between a CPU and GPU

is to compare how they process tasks. A CPU consists of a few cores

optimized for sequential serial processing while a GPU has a

massively parallel architecture consisting of thousands of smaller,

more efficient cores designed for handling multiple tasks simultaneously.

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

5

3.2. CUDA and OpenCL Frameworks - Definitions
CUDA by Wikipedia - Compute Unified Device Architecture (CUDA) is a parallel computing

platform and an application programming interface (API) model created by NVIDIA®. It

allows software developers to use a CUDA-enabled graphics processing unit (GPU) for

general purpose processing – an approach known as GPGPU.

OpenCL by Wikipedia - Open Computing Language (OpenCL) is a framework for writing

programs that execute across heterogeneous platforms consisting of central processing

units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-

programmable gate arrays (FPGAs) and other processors.

3.3. CUDA Architecture and Processing Flow
Unlike CPUs, GPUs have a parallel throughput

architecture that executes many concurrent threads,

rather than executing a single thread.

In the computer industry, GPUs are used not only for

graphics rendering but also in game physics calculations

(physical effects such as debris, smoke, fire, fluids).

CUDA has also been used to accelerate non-graphical

applications in computational applications that use

mathematical algorithms.

Example of a CUDA processing flow:

• Copy data from main mem to GPU mem

• CPU instructs the process to GPU

• GPU executes parallel in each core

• Copy the result from GPU mem to main mem

Since we can see that the processing flow involved both the CPU and GPU, we can declare that:

The faster this tandem (CPU and GPU) will be, the better computing

performance we will get.

3.4. CUDA Benchmark on Embedded System
In order to compare computing performance between a CPU and GPU, we will use the

NVIDIA® CUDA SDK 6.5 to run the same algorithm, once on the CPU and then on the GPU,

then compare the results.

We want to do a “fair” comparison, so we picked up one of the latest Intel platforms –

Haswell and NVIDIA GTX 770M graphic cards.

Both the boards and the HPEC GPGPU system are taken from Aitech Systems for the test’s purpose.

https://aitechsystems.com/

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

6

Hardware boards involved in this test:

• CPU – Intel Haswell i7 2.4GHz SBC (Manufacturer: Aitech Systems)

• GPU – Nvidia GTX 770M GPGPU board (Manufacturer: Aitech Systems)

• HPEC GPGPU System – A191 (Manufacturer: Aitech Systems)

3.4.1. “n-body” - CUDA N-Body Simulation
This sample demonstrates efficient all-pairs simulation of a gravitational n-body

simulation in CUDA.

CUDA API:
cudaGLSetGLDevice, cudaGraphicsMapResources,

cudaGraphicsUnmapResources,

cudaGraphicsResourceGetMappedPointer,

cudaGraphicsRegisterResource, cudaGraphicsGLRegisterBuffer,

cudaGraphicsUnregisterResource

Key Concept:

Graphics Interop, Data Parallel Algorithms, Physically-based Simulation

Figure 1: Running “n-body” on CPU Figure 2: Running “n-body” on GPU

 CPU GPU FACTOR

FPS 4.6 445.4 X 100

GFLOP/s 1.6 233.5 X 145

Note:

FPS – Frame per Second

GFLOP/s – Giga Floating Point Operations per second

Imagine yourself offloading heavy duty calculations to the GPU and freeing the CPU for

other mission critical tasks.

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

7

Now, we will increase the numbers of simulated n-bodies and compare the results

between the CPU and GPU.

 CPU GPU FACTOR

n-body number 4096 4096

Time for 10 iterations [msec] 2080.907 6.852

X 300 Interactions per second [billion ips] 0.081 24.486

Single-precision GFLOP/s at 20 flops per interaction 1.612 489.728

n-body number 8192 8192

Time for 10 iterations [msec] 8318.286 27.261

X 300 Interactions per second [billion ips] 0.081 24.617

Single-precision GFLOP/s at 20 flops per interaction 1.614 492.342

n-body number 16384 16384

Time for 10 iterations [msec] 33301.543 92.930

X 350 Interactions per second [billion ips] 0.081 28.886

Single-precision GFLOP/s at 20 flops per interaction 1.612 577.716

The graph below demonstrates the iteration latency of simulated, defined numbers of n-Bodies

between CPU and GPU.

Figure 3: Iteration Latency between CPU and GPU

It takes the GPU 93 msec and the CPU 16 sec to perform a simulation

on 16384 numbers.

Iteration Latency
35000

30000

25000

20000

15000

10000

5000

0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

TIME FOR 10 ITERATIONS [MSEC]

384, 92.93 16 .261 8192, 27 96, 6.852 40

907 4096, 2080.

6 2, 8318.28 819

ly. (GPU)

Po

PU

ly. (CPU)

G

Po

U CP

1.543 16384, 3330

N
-B

O
D

Y
 N

U
M

B
ER

S

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

8

3.4.2. SobolQRNG - Sobol Quasirandom Number Generator
This sample implements a Sobol Quasirandom Sequence Generator. Comparing this

algorithm between the CPU and GPU, we see how many samples may be involved per

second during the calculation process.

Number of vectors = 100000

Number of dimensions = 100

 CPU GPU FACTOR

Gsamples/s 0.230959 9.13413 X 40

3.5. Switchable Graphics

3.5.1. Why we need switchable graphics in embedded systems?
By using switchable graphics in embedded systems, we can actually enjoy both worlds of

power consumption and performance. When needed, we can offload heavy duty tasks to

the powerful GPU. On the other hand, when not needed, we can benefit from the internal

IGP (integrated graphics processor) and save a lot of power, improving system power

consumption and heat dissipation. So, what we have is:

• Full performance benefits of a discrete GPU

• Low power consumption of an integrated graphics solution

• Automatically optimized embedded systems that offer the best performance or

power consumption

3.5.2. NVIDIA® Optimus™ Technology
NVIDIA® Optimus™ technology intelligently optimizes embedded systems, providing the

outstanding graphics performance you need, when you need it, all the while optimizing

power consumption.

NVIDIA®’s explanation of Optimus™ technology:

Using NVIDIA’s Optimus technology, when the discrete GPU is handling all the

rendering duties, the final image output to the display is still handled by the Intel

integrated graphics processor (IGP). In effect, the IGP is only being used as a

simple display controller, resulting in a seamless, flicker-free experience with no

need to reboot.

When less critical or less demanding applications are run, the discrete GPU is

powered off and the Intel IGP handles both rendering and display calls to

conserve power and provide the highest possible battery life.

Read more here: https://developer.nvidia.com/optimus

https://developer.nvidia.com/optimus

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

9

3.5.3. AMD Enduro™ Technology
AMD Enduro technology optimizes your embedded system to give you an instant boost

in graphics performance when you need it, consuming virtually zero watts of power

when you don’t.

This is how AMD explains the key benefits:

Seamlessly switch between your APU or integrated graphics and your AMD

FirePro™ or AMD Radeon™ graphics, based on graphics workload, to allow you

to get longer battery life and outstanding performance.

Intelligent implementation in AMD Catalyst™ drivers allows the system to find

the best graphics option for your needs or enables you to configure it yourself

for the best performance possible.

Read more here: https://www.amd.com/en/technologies/enduro

4. Use Cases
There are so many use cases for GPGPU technology. Actually, any application that involves

mathematical calculation can be a very good candidate for this technology usage.

• Image Processing – enemy detection, vehicle detection, missile guidance, obstacle

detection, object detection, classification, segmentation, etc.

• Radar

• Sonar

• Video encoding and decoding (NTSC/PAL to H.264)

• Data encryption/decryption

• Database queries

• Motion Detection

• Video Stabilization

We can benefit from GPGPU by developing our own application using CUDA and OpenCL

high-level languages or we can run industrial GPU accelerated applications that are

already optimized.

Hundreds of industry-leading applications are already GPU-accelerated. Find out if the

applications you use are GPU-accelerated.

See more at: https://www.nvidia.com/en-us/gpu-accelerated-applications/

https://www.amd.com/en/technologies/enduro
https://www.nvidia.com/en-us/gpu-accelerated-applications/

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

10

5. Aitech AI GPGPU Systems
After seeing all these benefits from AI GPGPU, are you wondering if there is an

embedded system that leverages all these wonderful technologies?

There is such a system! Actually, an entire product line!

5.1. Aitech AI GPGU Product Line

Below you can find a quick summary of Aitech’s AI GPGPU product line, from HPEC

systems based on Intel Xeon SBCs and NVIDIA powerful GPUs, like RTX3000, to Small

Form Factor (SFF) systems based on the NVIDIA Jetson family.

5.2. Aitech A178 Thunder - GPGPU Fanless AI Supercomputer

The A178 Thunder is the smallest and most powerful rugged GPGPU AI supercomputer,

ideally suited for distributed systems, available with the powerful NVIDIA Jetson AGX

Xavier System-on-Module.

Its Volta GPU with 512 CUDA cores and 64 Tensor cores reaches 32 TOPS INT8 and 11

TFLOPS FP16 at a remarkable level of energy efficiency, providing all the power needed

for AI-based local processing right where you need it, next to your sensors. Two

dedicated NVDLA (NVIDIA Deep-Learning Accelerator) engines provide an interface for

deep learning applications.

With its compact size, the A178 Thunder is the most advanced solution for AI, deep

learning, and video and signal processing for the next generation of autonomous

vehicles, surveillance and targeting systems, EW systems, and many other applications.

GPGPU FOR EMBEDDED SYSTEMS WHITEPAPER DAN MOR

11

Benefits Aitech
A178

System
AI & GPGPU

Plenty of Calculation Power

CUDA

Power Consumption

Form Factor and Heat Dissipation

Generic Approach

Zero Time Porting

See more:

Aitech A178 Thunder: https://aitechsystems.com/product/a178-thunder-gpgpu/

Aitech AI GPGPU product line: https://aitechsystems.com/mil-aero/gpgpu-mil-aero/

Aitech video assets: https://aitechsystems.com/resource-library/

https://aitechsystems.com/product/a178-thunder-gpgpu/
https://aitechsystems.com/mil-aero/gpgpu-mil-aero/
https://aitechsystems.com/resource-library/

